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Crystal Structures of Zirconia from First Principles and Self-Consistent Tight Binding
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The origin of the relative stability of the cubic, tetragonal, and monoclinic phases of zirconiasZrO2d
is investigated. To obtain accurate energies we adopt a new all-electron bandstructure approach within
the local density approximation, based on muffin tin orbitals. We also develop a self-consistent tight-
binding model with which to study the energies for different structures. The tight-binding model
enables us to analyzeab initio and experimental phase stabilities in terms of ionic versus covalent
effects, including polarization of the anions, and promises to be useful for rapid simulation of more
complex systems. [S0031-9007(98)07811-9]

PACS numbers: 61.50.Ah, 31.15.Ar, 81.30.Hd
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Our primary aim is to understand the stability of th
crystalline phases and associated electronic structures
zirconia, ZrO2. It exhibits three structures in different
ranges of temperature at atmospheric pressure, and th
have been extensively studied for both their scientific an
technological importance [1–3]. The high temperatu
phase has the cubic fluorite structurescd. As the tem-
perature is reduced, the symmetry lowers to tetragon
std, Fig. 1, and finally monoclinicsmd. We have devel-
oped a new tool to help elucidate the driving forces i
this process. This is a self-consistent, tight-binding (TB
model which combines covalent and ionic features of th
system including polarizability and crystal field splitting
It is remarkable that the model reproduces the energe
and structural properties of the crystal phases of ZrO2
compared to precise calculations in the local density a
proximation (LDA) to density functional theory. More-
over, the ingredients of the model are such as to allow
to unravel the underlying physics that drives the observ
phase transitions.

Within the classic ionic model, the crystal structure
of many dioxides can be rationalized in terms of th
radius ratio of the ions. This criterion places ZrO2 on
the border of stability between sixfold coordinated cation
(as in rutile, TiO2) and eightfold coordinated cations, a
in UO2 which has the fluorite structure [4,5]. However
such a simple ionic model is inadequate to explain th
c, t, andm structures observed in ZrO2. The ionic model
has been extended to include compressible and polariza
oxygen ions, and an explanation of the relative stability
the phases at 0 K has been offered within this pictur
the dipole and quadrupole polarizabilities of theO22 ion
induce the symmetry breaking distortions of the lattic
[4]. We will see though that in fact the stability of
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the m phase can be attributed tocovalencyrather than
polarizability. A particular difficulty with the classical
model for ZrO2 [4] is that it predicts the rutile structure
srd to be of lower energy than them structure, although
the r structure is never observed experimentally in ZrO2.
This is overcome in the present TB model.

The need for electronic structure calculations als
becomes apparent when we consider the phase stabilit
doped zirconia. It is well known that the phase boundari
are shifted to lower temperatures by doping with suitab
impurities, and it is believed that oxygen vacancies pl
the key role in this (see, for example, Ref. [6]). Howeve
there is little firm knowledge about the nature of the poi
defects in ZrO2 [7], which are also crucial to the operation

FIG. 1. Atomic positions in thec andt modifications of ZrO2.
Large gray circles are O atoms and small black circles Zr. T
cubic,fluorite structure shows the eightfold Zr (see on the righ
and fourfold O coordination. The symmetry breaking distortio
to the tetragonal phase occurs as a spontaneous displaceme
the O atoms as shown for four atoms on the right.
© 1998 The American Physical Society 5149
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of this material as a sensor and in fuel cells. The compl
solid state chemistry of ZrO2 must derive in part from
the ease of reduction of the Zr41 ion. An understanding
of these aspects demands a treatment of electron tran
within ZrO2, which is of course beyond the scope o
classical ionic models. Severalab initio calculations have
been published, e.g., Refs. [8–10] for bulk phases, b
these approaches become unmanageable for large sys
containing defects. We have made accurateab initio LDA
calculations on bulk phases in order to parameterize a
benchmark the TB model, which we anticipate will be o
use for studying more complex systems.

The c phase has just one degree of freedom, its un
cell volume. Thet phase has two additional degrees o
freedom: besides the axialcya ratio of the unit cell, the
symmetry breaking displacement of the oxygen atomsd

is a variable (Fig. 1). Ther phase also has two additiona
degrees of freedom. Them structure has 12 additional
degrees of freedom. We have varied the size of t
unit cell in each case, so as to obtain energy vers
volume curves, and in each case we have complet
relaxed all internal degrees of freedom. To calculate t
band structures and total energies, we use an accu
method using density functional theory within the LDA
It is a new variant of the full potential linear muffin tin
orbitals (FP-LMTO) method [11], in which the charge
density is no longer matched at arbitrary sphere radii a
which removes the need for defining “empty” sphere
An additional benefit is the existence of an analytic forc
theorem. For the highest precision, we use a rath
complete basis ofs, p, d, andf smooth Hankel functions
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[11] with zero kinetic energy and additionals, p, and
d functions with kinetic energy22 Ry. These are
augmented within muffin tin spheres of radius 2 a.u. (Z
and 1.7 a.u. (O). We use Zr4p rather than5p orbitals
in the basis since the former cannot be treated as c
states [8,10] and the latter are too high in energy
contribute significantly to the energy bands. The Zr4s
dispersion is treated in a frozen, overlapping core appro
mation [11].

Our TB approach uses a minimal basis ofs and p
orbitals on oxygen andd orbitals on Zr. An entirely
new feature of our model compared to more conventio
self-consistent TB approaches [12–14] is the inclusion
off-diagonal, on-site matrix elements in the Hamiltonia
which are calculated from the crystal fields generated
the charge distribution. This feature allows the oxyg
ions to polarize to the dipole and quadrupole levels, th
incorporating for the first time in aquantum mechanical
model the effects which theclassical polarizable ion
model [4] predicts to be essential in discussing the relat
stability of the phases. We are therefore combini
in a single model the essential physics ofionicity and
covalencyand of polarizability which have previously
only been treated within conceptually separate models

We describe here the essential features of our
approach; details have been published elsewhere [15]
good theoretical starting point for this and all TB models
the Hohenberg-Kohn-Sham (HKS) total energy function
in which the exchange and correlation energyExcfng has
been expanded to second order in the electron den
nsrd [16]:
EHKS ­
occ.X

i

kCijH0jCil

2
1
2

Z n0n0
0

jr 2 r0j
dr dr0 1 Excfn0g 2

Z
Vxcfn0gn0 dr 1 Eii

1
1
2

ZZ √
1

jr 2 r0j
1

d2Exc

dn dn0

Ç
n­n0

!
dn dn0 dr dr0. (1)
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n0srd is a reference electron density andH0 is a refer-
ence one-electron Hamiltonian, in which the effective p
tential is generated from the reference electron dens
n0. dn ­ n 2 n0 is the difference between the actua
and the reference charge density. We use the shorth
notation of [14]; a prime on the charge density indicat
that it is evaluated atr0. The summation is over all oc-
cupied states (occ.). The Kohn-Sham equation, a sin
particle Schrödinger equation, is simply obtained fro
(1) by variational minimization with respect tonsrd ­Pocc.

i jCisrdj2 subject to the normalization constraints o
the wave functionskCijCil ­ 1. As in traditional TB
models, we treat the second line of (1) as a repulsive pa
wise potential of Born-Mayer form, the two parameters
which are fitted to approximately reproduce ourab initio
energy-volume curves for thec and r structures [15].
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Without the last term of (1), this functional is the
Harris-Foulkes one, which would haveO sdn2d errors.
To do self-consistent TB we introduce a two-center a
proximation both for the Hamiltonian and the electrosta
terms, so thatH0 couples local orbitals between two site
and the last term of (1) involves on-site and intersite i
teractions between atom-centered, nonspherical char
The TB representation of the term ind2Excydn dn0 is
purely on-site, and combines with the on-site Coulom
term to give an effective HubbardU, which we set
to 1 Ry.

The matrix elements ofH0 are determined with respec
to the c structure as follows. The on-sites-level in
oxygen is modeled as a nominal3s state to allow the
ions to polarize. In oxygen, the intersite paramete
sss, sps, pps, andppp and their distance dependenc
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are fitted to theab initio O-2p band and the volume
dependence of its bandwidth. The other intersite mat
elements are chosen to approximately reproduce
ab initio bandwidths, with the usual canonical scalin
[17], and only nearest neighbor (i.e., Zr-O) interaction
are included. The diagonal elements are fitted to theab
initio band gaps.

Motivated by the successes of classical polarizable
models, we approximate the intersite Coulomb terms
representingdn as a sum of point multipolesQL up to, ­
2, whereL stands for the combined angular momentu
indexs,, md. Previous self-consistent TB has included th
monopole terms (analogous to rigid ions [12]).

We include the higher multipoles as the expectati
values of the operator̂Qe

L ­ er̂,YLsrd at a given site in
the self-consistent wave function:

Qe
L ­

X
L0L00

occ.X
i

c̄i
L0ci

L00kL0jQ̂e
LjL00l . (2)

The ci
L0 appearing in (2) are the wave function expa

sion coefficients at the site in question in terms of th
localized orbitalskrjLl ­ f,srdYLsrd. The indexi sub-
sumes the band andk-point indices. The matrix elements
have the form

kL0jQ̂e
LjL00l ­ eD,0,00,CL0L00L , (3)

in which the strength of the, tupole created on a site by
combining orbitals of angular momentum,0 and,00 is

D,0,00, ­
Z

r,12f,0f,00 dr .

The symmetry and selection rules in (3) are taken ca
of by the Gaunt coefficientsCL0L00L. The one-electron
potential, including crystal field splitting up to, ­ 4,
is then obtained from (2) by a straightforward structu
constant expansion [15,17].

For our choice of minimum basis there are just tw
independentD’s on each site. On the Zr sites, the mo
important isDddg, which provides the cubic splitting of
d states into thet2 and e manifolds. We find a value
Dddg ­ 65 a.u. gives good agreement between TB andab
initio bands forc and r structures, which have opposite
signs of the splitting. The other parameter on Zr isDddd

which we simply set equal to
p

Dddg. On oxygen, the
parameters areDspp andDppd. These have no influence
at sites of cubic symmetry, but in the rutile structure, f
example, we have found thatDppd controls the width of
the oxygen2p band due to a splitting of theO 2 2p levels
by field gradients. The final crystal field parameter,Dspp ,
has little effect on the bands, but the dipole it creates on
anions effects the force on them in the symmetry break
c ! t distortion, so we have adjusted it to fit theab initio
energy versusd curve [15]. These results reproduce th
soft phonon mode at theX point which is associated with
the transition from thec structure.

Calculating forces on atoms within our TB mode
presents no difficulties after the self-consistent soluti
has been obtained by iteration. From the variational pro
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erty of the total energyEHKS, if we slightly displace an
ion, the first-order change in energy can be obtained
keeping theci

L and hence thedn unperturbed. The force
is therefore the sum of three contributions, correspond
to the three lines of (1): first the terms from the deriv
tives of the matrixH0 evaluated in the unperturbed wav
function, second the repulsive potential, and third the cla
sical electrostatic force between the unperturbed mu
poles. The first two terms are the same as in element
non-self-consistent TB, while the third is a surprising
straightforward application of classical electrostatics, t
simplicity of which is a result of charge self-consistenc
and the variational principle.

The energy volume curves we have calculated withab
initio and TB are displayed in Fig. 2. The axial ratioq
and tetragonal distortiond are also shown as a function
of volume in Fig. 2. Note that at small volumes, ther
is no symmetry breaking in thec phase, and that as the
volume is increased, the single energy well inq and d

splits into a double well. This is a second-order pha
transition, in whichd is the order parameter proportional t
the amplitude of the soft phonon mode. IfV0 is the volume
at the transition, Landau theory predicts thatd , sV 2

V0d
1
2 and q , sV 2 V0d. This is reflected in Figs. 2(c)

and 2(d).
Our ab initio calculations are in excellent agreeme

with experimental results, and incidentally confirm th
satisfactory accuracy of the pseudopotential method u
by Stapper, and Kraliket al. We find the energy dif-
ferences betweent and c, and m and c, to be 3.6 and
7.7 mRyyZrO2, compared to 3.3 and 7.5 found by Kralik
et al. [10]; and 4.6 and 8.2 found by Stapper [9]. Fig
ure 2 shows that our tight-binding model reproduces t
relative energetics of these phases as well as the ato
structures. Note that the new TB model reproduces
large volume expansion in the transition from thet to
the m phases. It is this that is exploited in the tran
formation toughening in ZrO2-based engineering ceramic
[1,18].

By switching off theD’s on the oxygen ions, we are
able to explore the effect of not allowing the anion
to polarize. This reduces but does not eliminate t
spontaneous tetragonal distortion of thec phase [15],
exposing the important role of polarizability in stabilizin
this lower symmetry phase. The energy of them phase
is increased by less than10 mRyyZrO2 when theD’s are
set to zero, which places them and c phases essentially
equal in energy. The polarizability is of less consequen
in stabilizing them phase than is the covalency, when w
set the TB hopping integrals to zero, reducing our mod
to a classical electrostatic one, thenc is more stable than
m by 40 mRy. We may conclude thatcovalencyis the
controlling effect in stabilizing the monoclinic phase o
ZrO2. This is in apparent contrast to the conclusions
the classical polarizable ion model which attributes t
stability of the m phase to the anion polarizability [4].
Such a model must capture all covalent effects within
5151
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FIG. 2. Structural energy versus volume in four phases
ZrO2. At each volume, the energy is minimized simultane
ously with respect to all the remaining degrees of freedom
(a) Ab initio calculations of the absolute binding energy (en
ergy with respect to spin polarized free atoms); (b) TB resu
referred to the equilibrium energy of them phase. (c) and
(d) show the axial ratioq and distortion parameterd in the t
modification as a function of volume.

ionic polarizabilities, and it remains to be seen how th
limits its transferability between atomic environments.

Future work will use the model to explore the ener
getics of defect structures in ZrO2 and apply the same
5152
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TB model to other oxides in which anion polarizability is
thought to be an important factor, such as Al2O3.
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