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We calculate the rate coefficient as a function of temperature for lattice diffusion of hydrogen and its
isotopes in a-iron; and also for trapping and escape from a vacancy. We employ Monte-Carlo and mo-
lecular dynamics methods based around the Feynman path integral formulation of the quantum partition
function. We find large quantum effects including tunnelling at low temperature and recrossing at high
temperature due to the finite extent of the particle probability density. In particular these serve to in-
crease the rate of trapping and to decrease the rate of escape at low temperature. Our results also show
very clear non classical isotope effects.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

One of the largest known diffusivities in the solid state is that of
hydrogen in a-iron [1,2]. There are two reasons for this. One lies in
the geometry of the body centered cubic lattice and its tetrahedral
interstices; the other arises from the small mass of the proton
leading to strong quantum effects, including large zero point en-
ergies and tunnelling [3]. It is typical that a rate coefficient may
show Arrhenius behaviour at high temperature, T, and be essen-
tially independent or weakly dependent on T otherwise [4] (see
Fig. 4). A further complication arises in a-iron in that the transport
of H is much attenuated by trapping of protons by crystal defects:
dislocations, grain boundaries and vacancies, among others [5].
Hence the measurement of the lattice diffusivity presents many
technical challenges [1] so that onewould like to be able to separate
out the effects of lattice diffusion and trapping by suitable theo-
retical calculations. We are concerned with the traps' capture
probabilities [6]. In addition we are keenly interested in the mean
residence time, t, of a proton trapped at a defect [6]; this is the in-
verse of the associated rate coefficient for jumping out of the trap.
In addressing these matters we arrive at some rather startling
conclusions concerning the roles of tunnelling through the barrier
and recrossing at the saddle point in the potential energy surface.
).
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We find that an interesting qualitative interpretation can be made
from the behaviour of the “beads” in the path integral “necklace” in
Feynman's picture.

The most severe approximation that we make is to assume that
the hydrogen atom moves in a static lattice of iron atoms. This
means that we cannot admit phonon assisted tunnelling [7].
However it allows us towork with a potential energy surface which
provides a single degree of freedom in the classical transition state
theory [4,8]. We do allow relaxation of the iron atoms, albeit in a
rather stilted form: when the proton is in a reactant or product
state (before or after a hop) it sees a lattice of iron atoms relaxed
about the proton in its metastable position.We also hold the proton
in a saddle point position and relax the iron atoms to provide an
“activated complex” state. To locate saddle points we use a “nudged
elastic band” (NEB) energy minimisation [9]. Interatomic forces
that are required for these procedures are obtained from a mag-
netic tight binding (TB) model of H in iron [10]. This is not a severe
approximation, since comparison with density functional theory
(DFT) calculations shows good agreement in both concentrated and
dilute limits [10]. In Fig. 1 we show a contour plot of the two po-
tential energy surfaces.

Having established potential energy surfaces we calculate po-
sition probability densities (PPD) and quantum partition functions
employing the Feynman path integral method [11] in a manner
described earlier [12] using WangeLandau Monte Carlo [13]. To
address trapping we consider the singly occupied vacancy as an
archetypal trap for hydrogen. This is a much studied defect and
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Calculated potential energy surfaces for a proton in fixed Fe lattices. In (a) the Fe atoms are relaxed about the proton when it is fixed at the bulk tetrahedral site. In (b) the Fe
atoms are at the relaxed saddle point configuration. The potential energy, V, is in electron volts. In each case the equilibrium proton position is at the origin of the coordinates.
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regarded to have particular significance for the behaviour of H in a-
iron [2,14]. The TB model has been shown to give a good account of
the atomic structure and energetics of H binding to a vacancy
compared to DFT calculations [10,15,16]. Fig. 2 shows a cartoon of
the six possible hydrogen absorption sites.

Fig. 3 shows the PPD of H trapped at an a-iron vacancy. It is very
significant that at 50 K, although the centroid of the particle (in the
language of path integral theory [17]) is constrained to remain at
the dividing surface, the PPD clearly indicates that the proton has
tunnelled through the barrier and largely escaped from the trap
(indeed the proton has “split into two”). Note also, that at high T the
proton is by no means localised and samples a considerable region
of configuration space orthogonal to the reaction path, ie, in the
region of the “dividing surface” having potential energies greater
than at the saddle point. Therefore we would expect quantum ef-
fects effectively to lower the activation barrier at low T, but to raise it
at high T.
Fig. 2. The six absorption sites of a hydrogen atom bound to a vacancy in bcc Fe. Up to
six hydrogen atoms may be absorbed exothermically from bulk tetrahedral sites. The
vacant site itself is not a trap site. Roughly, each proton is found near a tetrahedral site
on the faces bounding the vacancy; however each is displaced slightly towards the
vacancy and in some cases there are small lateral shifts. For precise locations, see
Refs. [16,10].
2. Theory and results

The Feynman path integral method is a means to obtain quan-
tum partition functions. We illustrate this for a single particle
whose equation of motion is Schr€odinger's equation in a potential
energy V(x) (which becomes our potential energy surface in the
configuration space of all the atoms in our simulations). The
partition function of this particle is [11,19].

Z ¼ P
i
e�bEi ¼

Z
dx rðx; x; TÞ

¼
Z

DxðuÞ e�S=Z
(1)

Here, Ei are eigenvalues of the Schr€odinger equation, r is the one
particle density matrix, and the particle's probability density (see
Fig. 3) is r(x,x,T)/Z. Equation (1) is an integral of the action in
imaginary time

S½xðuÞ� ¼
ZbZ
0

du
�
1
2
m _x2ðuÞ þ VðxðuÞÞ

�

the symbolDxðuÞ indicating that the integral in (1) is taken over
all paths in configuration space starting at time u¼ 0 and finishing
at u ¼ bZ, where b ¼ 1/kBT and kB is the Boltzmann constant. The
paths over which (1) is taken are closed in the sense that the par-
ticle starts and finishes at the same point, x, in configuration space.
The integral in (1) can be discretised for numerical purposes and
this furnishes us with the approximate formula [19].
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again over all closed paths having xiþP¼ xi, ci [17]. But this is more
than just a numerical convenience. It reveals that the partition
function of a quantum particle is identical to that of a necklace of P
classical particles, or beads, moving in a reduced potential energy
V(x)/P and connected by springs of stiffnessmP=b2Z2. Note that the
stiffness is proportional to T2 which means that at high T the
necklace tightens towards a point particle (the classical limit) while



Fig. 3. Calculated temperature dependence of the position probability density of hydrogen trapped at a vacancy in a-iron. In (a)e(c) the centroid of the particle is constrained to be
at the saddle point position, which lies at the origin of the coordinates. In (d)e(f) the particle is at the reactant potential well, viz. trapped at a vacancy (the origin of coordinates) in a
bcc a-iron lattice.
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at low T the necklace spreads out over the potential energy surface.
The estimate converges to the exact result in the limit P / ∞. For
our purposes we find P¼ 20 is adequate. In what follows we will
use themapping of the quantum particle to the classical necklace to
provide insight in the roles of temperature and isotope mass on
trapping and escape of hydrogen at crystal defects in a-iron.

To describe transport and trapping we use reactive flux theory
[20,4,21]. This is best introduced through classical transition state
theory [22] (TST) beginning with the classical picture of a system
that moves from reactant to product basins in a potential energy
surface, F, passing through a saddle point. The rate coefficient in
this reaction is [8],

kTSTðTÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmb

p

Z
S

e�bFdS

Z
A

e�bFdv
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmb
p Z�

Zr
Fig. 4. Path integral QTST rate coefficients kQTST(T) for lattice (bulk) diffusion and for trap
deuterium and tritium; and by scaling with

ffiffiffiffiffi
m

p
the deviation from a classical isotope effect i

D¼ a2kQTST/12 where a is the bcc lattice constant, and include a cross and circle at electroc
The term 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmb

p
may be interpreted as the “velocity” of the

system as it approaches the saddle point. Since the iron lattice is
fixed in our approximation we can take m to be the mass of the
proton. The integral in the denominator is over all coordinate space
A on the reactant side of the dividing surface and hence is essen-
tially a reactant partition function Zr. Z* is the partition function for
the system constrained to remain at a dividing surface S separating
reactant and product basins and belonging to a configuration space
of one fewer dimension. For comparison with experiment, even in
the quantum case, one would like to cast this into Arrhenius form.
To this end Vineyard imagines a third partition function Z�r (the
“star” indicating reduced dimensionality) which belongs in a
configuration space after the dividing surface has been translated
from the saddle point down into the reactant basin [8]. Multiplying
and dividing by this, the rate coefficient becomes
ping by, and escape from, a vacancy. Results are shown for the anti-muon, hydrogen,
s revealed. The insets show the data at high T; for the bulk case we show the diffusivity,
hemical permeation measurements of H from Refs. [1] and [18] respectively.
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kTSTðTÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmb

p Z�r
Zr

Z�

Z�r
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmb
p Z�r

Zr
e�bDF

which is in the required Arrhenius form after recognising that DF is
the reversible work, or free energy difference, in taking the con-
strained system from the reactant basin to the saddle point. This
now passes rather neatly into a quantum transition state theory
(QTST) by replacing classical partition functions with quantum
mechanical ones [11,24]. In reactive flux theory the rate coefficient
is [4,21],

t�1ðTÞ ¼ k
�
tp
�
kQTSTðTÞ ¼ k

�
tp
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmb
p Z�ðTÞ

ZrðTÞ (2)

We can further calculate Z�r ðTÞ and so quite formally we arrive at

t�1ðTÞ ¼ k
�
tp
�
ne�bDF (3)

with

nðTÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmb

p Z�r ðTÞ
ZrðTÞ

and

�bDFðTÞ ¼ ln
Z�ðTÞ
Z�r ðTÞ

The term k(tp) is the transmission coefficient which we turn to
presently. It is only necessary to find the two partition functions Z*

and Zr to determine the QTST rate coefficient, kQTST, but if Z�r is also
calculated then one can make contact with the Arrhenius form and
enquire into how strong are the temperature dependences of the
frequency prefactor and activation energies, which in the classical
theory are T-independent. Fig. 4 shows QTST rate coefficients for
lattice diffusion, and for trapping and release at a vacancy. In order
to study isotope effects we show results for the anti-muon, proton,
deuteron and tritium nucleus. In the larger plots we scale the rate
coefficient with the square root of the mass: in a classical picture
the data would thus fall into a single curve. Deviations from clas-
sical behaviour are very striking, except in the case of escape from
the deep trap in which the barrier is too high to admit quantum
effects. We should note that our theory is in reasonable agreement
with the observed diffusivity of H in a-iron as indicated by data
points in the inset of the left hand figure. The diffusivity shows a
very large change in the Arrhenius slope below about 400 K so that
an extrapolation from high temperature would lead to an error in
the room temperature diffusivity of hydrogen of about a factor of
two. The most striking quantum effect is seen in the case of trap-
ping. The rate coefficient for jumping into a tetrahedral site
neighbouring a vacancy from the nearest tetrahedral site in the
next unit cell shows a very large non classical temperature
dependence and isotope effect. This is evident in Fig. 3(a) which
shows that at low T, with the centroid positioned at the dividing
surface the proton has a small probability density at the reactant,
trap site, although it has largely tunnelled out of the trap into the
neighbouring tetrahedral site.

The transmission coefficient, k(tp), enters as a factor in (2)
consistent with the reactive flux theory of Miller et al. [20] who
write the exact rate coefficient [21,25]

k
�
tp
�
kQTSTðTÞ ¼ ~cfs

�
tp
�

ZrðTÞ

in terms of a Kubo transformed fluxeside correlation function [23],
~cfsðtÞ ¼ Tr
	
e�bH~FeiHt=Zqe�iHt=Z




in which the Kubo transform is defined as [26].

~F ¼ b�1
Zb
0

dl elH F e�lH

Here H and F are the Hamiltonian and flux operators,

F ¼ iZ�1½H; q�

the brackets indicating a commutator, and

qðsÞ ¼
�
1 if s>0
0 if s<0

is a step function which is zero or one depending on whether the
system is on the reactant or product sides of the dividing surface.
The transmission coefficient is calculated as the canonical
ensemble average [21].

kðtÞ ¼ hdðq� � qÞðp=mÞqðqðtÞ � q�Þi
hdðq� � qÞðp=mÞqðpÞi

Here q is a reaction coordinate, the “star” denoting a constraint
onto the dividing surface (as above) and a “bar” an average over the
beads in the path integral necklace [17,21]; p ¼ m _q is momentum.
At long times, t~t, k(t) tends exponentially to zero [4]; the hope is to
identify a characteristic plateau time tp << t around which the
transmission coefficient is fairly constant [4]. In classical TST k(t) is
one: an assertion of the axiom that if the system reaches the saddle
point with finite velocity in the direction of the reaction it will
proceed into the product basin. The transmission coefficient thus
accounts for recrossing of the dividing surface [4]. Ideally we'd like
to find t�1 simply by multiplying the two terms in (2), however as
we now show it's not always straightforward to identify the
plateau. WangeLandau Monte Carlo has the benefit that it calcu-
lates directly the density of states so that thereafter the partition
function can be obtained without further effort at any desired T
[13]. On the other hand to find k(t) requires a lengthy set of com-
puter simulations at each temperature of interest. We have calcu-
lated k(t) using ring polymer molecular dynamics (RPMD) [17,21],
averaging over more than 106 trajectories. Fig. 5 shows our calcu-
lations at some representative temperatures for the cases of trap-
ping and escape of H and D from the vacancy. In some cases it is not
possible to identify a plateau region. We should point out that the
RPMD is an approximation to the exact quantum dynamics only in
the short time limit; as the simulation time increases, so does the
possibility that the transmission coefficient calculated in RPMD
deviates from the exact quantum transmission coefficient [25]. The
product in (2) is independent of the choice of dividing surface [21];
however the two individual factors are not. Because of the difficulty
in calculating k(tp) unequivocally and as a smooth function of T, it is
best to consider the two terms separately and examine their
product qualitatively as we do here. Thereby we may observe clear
and striking quantum and non Arrhenius properties of kQTST(T) as
we do in Fig. 4 and match these with the rather startling conclu-
sions from Fig. 5. We return to these shortly.

3. Discussion

In the following discussion, for brevity and clarity we will focus
only on hydrogen and deuterium. For the case of bulk, lattice
diffusivity we find that the transmission coefficient reaches a



Fig. 5. Transmission coefficients for trapping and escape for H and D at up to five representative temperatures. Hydrogen trapping is shown in the inset at the left; other insets are
used to show the data in more detail at expanded scales. Each curve is an average over 2.4� 106 trajectories. The oscillations at high T and large mass, are internal modes of the ring
polymer and are non physical artefacts of the RPMD [23] (but it is interesting that their phase survives the averaging over initial conditions).
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plateau value of one for both H and D at 200 K and 300 K; at 500 K k

takes values of about 0.6 in D and 0.7 in H at 20 ps but has not yet
reached a plateau. If we take it that at all temperatures k(tp)/ 1 in
the case of bulk diffusion we can then use the QTST to study lattice
diffusivity. Moreover the factorisation of the rate coefficient into
Arrhenius form (3) is unambiguous since there is no arbitrariness in
the choice of dividing surface in the case of a symmetric diffusion
hop. To this end we show in Fig. 6 the activation energies and
frequency prefactors as written in (3) as a formal rewriting of (2)
with k(tp) ¼ 1. We can draw a number of conclusions about lat-
tice diffusivity from Figs. 4 and 6.

(i) The isotope effect is far from being described by the classicalffiffiffiffiffi
m

p
factor.

(ii) Both n and DF show a marked temperature dependence, at
least at low temperature.

(iii) Even at ambient temperatures and considerably above,
quantum effects are non negligible.

(iv) While the factorisation into frequency prefactor and activa-
tion terms is unambiguous in the case of lattice diffusion, the
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Fig. 6. Temperature dependence of the activation energy and prefactor in the Arrhe-
nius expression (3) for the rate coefficient in lattice (bulk) diffusion of H and D in a-
iron. The data drawn as error bars show estimates of the activation energy from H2 gas
equilibration (high T) and electrochemical permeation (low T) [1]. Estimates of the
prefactor from the same data are 15e37 ps�1 and 11 ps�1 [1] which are not necessarily
in reasonable accord with our theoretical calculations (see the text). The curvature of
the tight binding, nudged elastic band, potential energy surface gives n¼13 ps�1 [15].
resulting terms are not necessarily those that are measured
[1], so that whereas we make contact with experimental
estimates of the activation energy, this is only an illustration.
It is particularly striking that the actual proton frequency
belonging to the potential energy surface is more than a
factor of two smaller than the high temperature prefactor
deduced after the factorisation.

We can now discuss Figs. 4 and 5 in relation to trapping and
escape. The rate coefficient for trapping shows characteristic T-in-
dependence at low T to a greater extent than the bulk case because
at low T we estimate that about 90% of the PPD resides in the
reactant well, compared to exactly 50% in the bulk case. This serves
effectively to reduce the low T activation barrier. Conversely the
rate coefficient for escape is largely classical in its T-dependence. It
is important to appreciate that the potential energy surface near
the saddle point has negative curvature in the reaction coordinate
direction, but otherwise is steeply rising. A classical particle may
exist exactly at the saddle point but a quantum particle has a PPD
that occupies a region of configuration space demanding that it
acquires a larger potential energy, having amplitude to exist in the
neighbourhood of the saddle point. This circumstance persists up to
the highest temperatures that we have considered here; and it is
useful to imagine that at low temperature the PPD may indeed be
more closely confined near the saddle pointdthe PPD changes
from “disk-shape” to “spherical” as the temperature is raised and
this makes it harder to “squeeze” over the barrier. There is a wealth
of curious phenomena contained in our calculated transmission
coefficients. In the case of trapping, transmission coefficients for H
are rather straightforward: at 200 K and 300 K, k(tp) ¼ 1. This is due
to the asymmetry of the PES which drops off steeply on the product
side of the saddle pointdat low T the springs of the necklace are
weak, the beads are well separated and once the leading bead falls
into the trap it pulls the others after it. At 500 K the plateau is not
yet reached after 20ps of simulation time but the transmission
coefficient is expected to be less than one because the springs are
become stiffer and recrossing is easier. The trapping of D shows
similar behaviour. At low T the behaviour is as just described for H;
again as T increases k falls, since tunnelling becomes less easy, and
indeed reaches a minimum at around 1000 K after which we expect
k to approach the classical value of one. In fact we have calculated k

in this case for a single-bead, classical particle and it is indeed one.
The escape of D is inhibited at and below 200 K by a vanishing
transmission coefficientdthis is not the expected exponential
decay as t / t, since in the QTST t z 200 ps (Fig. 4), this being a
lower limit since k < 1. There is a deeper reason for the vanishing of
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the transmission coefficient here. Escape is the reverse of the case
for trapping: even if the leading bead reaches over the saddle point,
it is dragged back into the trap by its weakly connected images
which are still climbing the steep PES. At 500 K and above the
springs are stiff enough to prevent this recrossing mechanism.
Finally we turn to the escape of H from the trap. This is also “frozen”
out at 200 K and 300 K as for D, but is reversed at very low T since at
100 K and 50 K k is small but non zerodan effect we attribute to
tunnelling. The minimum in k for escape of H is at about room
temperature, when tunnelling is weak, but the particle is not yet
classical. We should repeat that in two situations, H escape and D
trapping, Fig. 5 shows minima in the T-dependence of the trans-
mission coefficient. For H escape k has a minimum of about 0.001
just below room temperature, and for D trapping k has minimum
value of 0.2 at about 1000 K. In both these cases we attribute the
increase in k as T/ 0 to tunnelling and the increase at high T as due
to the approach to classical behaviour. From that point of view
neither H nor D are behaving classically at room temperature.
Again, we point out that even up to 1500 K D trapping is not clas-
sical, since k ¼ 0.6 while a single bead simulation results in the
classical result k ¼ 1.

4. Conclusions

In conclusion, we have calculated QTST rate coefficients and
transmission coefficients for hydrogen and its isotopes undergoing
lattice diffusion, trapping and escape from a vacancy in a-iron,
using a tight binding formalism for interatomic forces and reactive
flux theory using Wang-Landau Monte-Carlo and RPMD within the
Feynman path integral formalism. At temperatures where tunnel-
ling becomes competitive with classical over barrier reaction
pathways (below 350 K) we observe opposing effects on escape and
trapping rate coefficients. Transmission coefficients calculated by
RPMD indicate that moderate tunnelling impedes escape from the
vacancy while trapping into the defect is assisted. In the deep
tunnelling regime (below 100 K) the trapping rate coefficient
shows the largest deviation from Arrhenius form. The transmission
coefficient for escape at temperatures around and below 100 K
increases by two orders of magnitude which also is attributed to
deep tunnelling. These discoveries will have a bearing on the
interpretation of permeation and thermal desorption experiments.
At present it is necessary to examine kQTST and k independently,
nonetheless the method is promising and shows a way forward to
study defects of more immediate practical importance, viz. dislo-
cations, and grain and interphase boundaries in steel.
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